If you published something on these topics, then drop me a note and I will see if it qualifies to get listed here.



Contents



Artificial Intelligence

Computer Vision

  • Acuna et al. (2019): Devil is in the Edges: Learning Semantic Boundaries from Noisy Annotations. arXiv:1904.07934

  • Berg and Haddad (2016): Visual Odometry for Road Vehicles Using a Monocular Camera. A comparison of Feature Matching and Feature Tracking using FAST, SURF, and SIFT detectors. Master Thesis, Gothenburg. PDF

  • Corke (2011): Robotics, Vision and Control. link

  • Forsyth and Ponce (2012): Computer Vision: A Modern Approach, 2nd Edition.
  • Fu et al. (2019): Deep Ordinal Regression Network for Monocular Depth Estimation. arXiv:1806.02446

  • Hartley and Zisserman (2003). Multiple view geometry in computer vision. Cambridge university press.

  • Nunez et al. (2011): Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor. Sensors 2011, 11(7), 7262-7284. DOI:10.3390/s110707262

  • Pfeuffer and Dietmayer (2019): Robust Semantic Segmentation in Adverse Weather Conditions by means of Sensor Data Fusion. arXiv:1905.10117
  • Pillai et al. (2018): SuperDepth: Self-Supervised, Super-Resolved Monocular Depth Estimation. arXiv:1810.01849

  • Szeliski (2010): Computer Vision: Algorithms and Applications. http://szeliski.org/Book/

  • Wofk et al. (2019): FastDepth: Fast Monocular Depth Estimation on Embedded Systems. arXiv:1903.03273

Datasets

Have a look at a different list, please

Deep Learning, Machine Learning and Optimization

GPS

IMUs

LiDAR

  • Ali et al. (2018): YOLO3D: End-to-end real-time 3D Oriented Object Bounding Box Detection from LiDAR Point Cloud. arXiv:1808.02350

  • Biasutti et al. (2019): RIU-Net: Embarrassingly simple semantic segmentation of 3D LiDAR point cloud. arXiv:1905.08748
  • Biasutti et al. (2019): LU-Net: An Efficient Network for 3D LiDAR Point Cloud Semantic Segmentation Based on End-to-End-Learned 3D Features and U-Net. arXiv:1908.11656

  • Dewan and Burgard (2019): DeepTemporalSeg: Temporally Consistent Semantic Segmentation of 3D LiDAR Scans. arXiv:1906.06962

  • Heinzler et al. (2019): Weather Influence and Classification with Automotive Lidar Sensors. In: IEEE IV 2019 Proceedings. doi:10.1109/IVS.2019.8814205

  • Wang et al. (2019): PointSeg: Real-Time Semantic Segmentation Based on 3D LiDAR Point Cloud. arXiv:1807.06288

Planning and prediction

  • de Brebisson et al. (2015): Artificial Neural Networks Applied to Taxi Destination Prediction. arXiv:1508.00021

  • Huegle et al. (2019): Dynamic Input for Deep Reinforcement Learning in Autonomous Driving. arXiv:1907.10994

  • Karaman and Frazzoli (2013): Sampling-based Optimal Motion Planning for Non-holonomic Dynamical Systems. Proceedings - IEEE International Conference on Robotics and Automation. DOI: 10.1109/ICRA.2013.6631297

  • LaValle (2006): Planning Algorithms. Cambridge University Press, 842 pages. pdf edition

  • Pivtoraiko et al. (2009): Differentially Constrained Mobile Robot Motion Planning in State Lattices. Journal of Field Robotics 26(3), 308-333. DOI:10.1002/rob.20285

  • Tamar et al. (2016): Value Iteration Networks. arXiv:1602.02867

RADAR

Robotics

Self-driving cars

Simulators

  • Dosovitskiy et al. (2017): CARLA: An Open Urban Driving Simulator. Proceedings of the 1st Annual Conference on Robot Learning, 1-16. PDF talk

SLAM, State Estimation and Pose Estimation

  • Barfoot (2017). State Estimation for Robotics. Cambridge University Press, 394 pages. http://asrl.utias.utoronto.ca/~tdb/
  • Bender et al. (2014): Lanelets: Efficient Map Representation for Autonomous Driving. IEEE Intelligent Vehicles Symposium (IV)June 8-11, 2014. Dearborn, Michigan, USA. 420 - 425. DOI: 10.1109/IVS.2014.6856487

  • Caruso et al. (2015): Large-scale Direct SLAM for Omnidirectional Cameras. URL: https://vision.in.tum.de/_media/spezial/bib/caruso2015_omni_lsdslam.pdf

  • Farrell and Roysdon (2017): Advanced Vehicle State Estimation: A Tutorial and Comparative Study. IFAC-PapersOnLine 50(1), 15971-15976. DOI:10.1016/j.ifacol.2017.08.1751

  • Julier and Uhlmann (1997): New extension of the Kalman filter to nonlinear systems. Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, (28 July 1997). DOI:10.1117/12.280797

  • Ludwig and Burnham (2018): Comparison of Euler Estimate using Extended Kalman Filter, Madgwick and Mahony on Quadcopter Flight Data. International Conference on Unmanned Aircraft Systems (ICUAS’18), Dallas, Texas, USA, June 2018. pdf

  • Mur-Artal and Tardós (2017): ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics, vol. 33 (5), 1255-1262, 2017. PDF

  • Sola (2017): Quaternion kinematics for the error-state Kalman filter. arXiv:1711.02508

  • Terejam (2009): Unscented Kalman Filter Tutorial. https://cse.sc.edu/~terejanu/files/tutorialUKF.pdf

  • Wang et al. (2017): Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras. URL: https://vision.in.tum.de/_media/spezial/bib/wang2017stereodso.pdf
  • Welch (ongoing): The Kalman Filter. A large collection of everything about various flavors of Kalman filter. https://www.cs.unc.edu/~welch/kalman/

  • Ye and Liu (2017): LiDAR and Inertial Fusion for Pose Estimation by Non-linear Optimization. ICRA 2018. arXiv:1710.07104

UAVs (Unmanned Aerial Vehicles aka Drones)