By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
What is the 10 001st prime number?

Project Euler Problem 7

I have absolutely no idea how not to brute force this. This is my approach:

function isPrime(n::BigInt)
        isPrimeNumber::Bool = true;
        if n%2 == 0
                isPrimeNumber = false;
                return isPrimeNumber
        end
        for i in 3:2:(n-1)
                if n%i == 0
                        isPrimeNumber = false;
                        return isPrimeNumber
                end
        end
        return isPrimeNumber
end


function getPrime(primeID::UInt64)
        if primeID == 1
                prime::BigInt = 2;
        else
                primeCounter::UInt64 = 2;
                prime = 3;
                currentNumber::BigInt = 3;
                while primeCounter != primeID
                        currentNumber += 2;
                        if isPrime(currentNumber)
                                prime = currentNumber;
                                primeCounter += 1;
                        end
                end
        end
        return prime

end

function parseARGS()
        if isempty(ARGS)
                primeID::UInt64 = 10001;
        else
                primeID = tryparse(UInt64,ARGS[1]);
        end
        return primeID
end

function main()
        primeID = parseARGS();
        prime = getPrime(primeID);
        println(prime);
end

main()
$ julia ProjectEuler0007.jl 6
13
  0.000064 seconds (215 allocations: 4.430 KiB)

$ julia ProjectEuler0007.jl 60
281
  0.001178 seconds (23.06 k allocations: 400.141 KiB)

$ julia ProjectEuler0007.jl 1000
7919
  0.573752 seconds (9.37 M allocations: 157.290 MiB, 26.70% gc time)

$ julia ProjectEuler0007.jl 10001
104743
 83.428065 seconds (1.24 G allocations: 20.418 GiB, 28.12% gc time)

That is way too slow. I already looked at odd numbers only to save time.