The following iterative sequence is defined for the set of positive integers:
n → n/2 (n is even)
n → 3n + 1 (n is odd)
Using the rule above and starting with 13, we generate the following sequence:
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1It can be seen that this sequence (starting at 13 and finishing at 1) contains 10 terms. Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
NOTE: Once the chain starts the terms are allowed to go above one million.
function getChain(n::UInt64)
chain = Array{UInt64,1}();
push!(chain, n);
while n > 1
if n%2 == 0
n /= 2;
else
n = 3*n+1;
end
push!(chain,n);
end
return chain
end
function getLongestChain(n_max::UInt64)
longestChainLength::UInt64 = 0;
longestChain = Array{UInt64,1}()
for n in 1:1:n_max
chain = getChain(n);
if length(chain) > longestChainLength
longestChain = chain;
longestChainLength = length(longestChain);
end
end
return longestChain, longestChainLength
end
function parseARGS()
if isempty(ARGS)
n_max::UInt64 = 1000000;
else
n_max = tryparse(UInt64,ARGS[1]);
end
return n_max
end
function main()
n_max = parseARGS();
longestChain, longestChainLength = getLongestChain(n_max);
println("longest chain starting number: ",longestChain[1]);
println("length: ", longestChainLength);
println("longest chain:");
for element in longestChain[1:end-1]
print(string(element), "->")
end
print(string(longestChain[end]));
end
main()
$ julia ProjectEuler0014.jl 13
longest chain starting number: 9
length: 20
longest chain:
9->28->14->7->22->11->34->17->52->26->13->40->20->10->5->16->8->4->2->1
0.000322 seconds (158 allocations: 8.188 KiB)
$ julia ProjectEuler0014.jl 1000000
longest chain starting number: 837799
length: 525
longest chain:
837799->2513398->1256699->3770098->1885049->5655148->2827574->1413787->4241362->2120681->6362044->3181022->1590511->4771534->2385767->7157302->3578651->10735954->5367977->16103932->8051966->4025983->12077950->6038975->18116926->9058463->27175390->13587695->40763086->20381543->61144630->30572315->91716946->45858473->137575420->68787710->34393855->103181566->51590783->154772350->77386175->232158526->116079263->348237790->174118895->522356686->261178343->783535030->391767515->1175302546->587651273->1762953820->881476910->440738455->1322215366->661107683->1983323050->991661525->2974984576->1487492288->743746144->371873072->185936536->92968268->46484134->23242067->69726202->34863101->104589304->52294652->26147326->13073663->39220990->19610495->58831486->29415743->88247230->44123615->132370846->66185423->198556270->99278135->297834406->148917203->446751610->223375805->670127416->335063708->167531854->83765927->251297782->125648891->376946674->188473337->565420012->282710006->141355003->424065010->212032505->636097516->318048758->159024379->477073138->238536569->715609708->357804854->178902427->536707282->268353641->805060924->402530462->201265231->603795694->301897847->905693542->452846771->1358540314->679270157->2037810472->1018905236->509452618->254726309->764178928->382089464->191044732->95522366->47761183->143283550->71641775->214925326->107462663->322387990->161193995->483581986->241790993->725372980->362686490->181343245->544029736->272014868->136007434->68003717->204011152->102005576->51002788->25501394->12750697->38252092->19126046->9563023->28689070->14344535->43033606->21516803->64550410->32275205->96825616->48412808->24206404->12103202->6051601->18154804->9077402->4538701->13616104->6808052->3404026->1702013->5106040->2553020->1276510->638255->1914766->957383->2872150->1436075->4308226->2154113->6462340->3231170->1615585->4846756->2423378->1211689->3635068->1817534->908767->2726302->1363151->4089454->2044727->6134182->3067091->9201274->4600637->13801912->6900956->3450478->1725239->5175718->2587859->7763578->3881789->11645368->5822684->2911342->1455671->4367014->2183507->6550522->3275261->9825784->4912892->2456446->1228223->3684670->1842335->5527006->2763503->8290510->4145255->12435766->6217883->18653650->9326825->27980476->13990238->6995119->20985358->10492679->31478038->15739019->47217058->23608529->70825588->35412794->17706397->53119192->26559596->13279798->6639899->19919698->9959849->29879548->14939774->7469887->22409662->11204831->33614494->16807247->50421742->25210871->75632614->37816307->113448922->56724461->170173384->85086692->42543346->21271673->63815020->31907510->15953755->47861266->23930633->71791900->35895950->17947975->53843926->26921963->80765890->40382945->121148836->60574418->30287209->90861628->45430814->22715407->68146222->34073111->102219334->51109667->153329002->76664501->229993504->114996752->57498376->28749188->14374594->7187297->21561892->10780946->5390473->16171420->8085710->4042855->12128566->6064283->18192850->9096425->27289276->13644638->6822319->20466958->10233479->30700438->15350219->46050658->23025329->69075988->34537994->17268997->51806992->25903496->12951748->6475874->3237937->9713812->4856906->2428453->7285360->3642680->1821340->910670->455335->1366006->683003->2049010->1024505->3073516->1536758->768379->2305138->1152569->3457708->1728854->864427->2593282->1296641->3889924->1944962->972481->2917444->1458722->729361->2188084->1094042->547021->1641064->820532->410266->205133->615400->307700->153850->76925->230776->115388->57694->28847->86542->43271->129814->64907->194722->97361->292084->146042->73021->219064->109532->54766->27383->82150->41075->123226->61613->184840->92420->46210->23105->69316->34658->17329->51988->25994->12997->38992->19496->9748->4874->2437->7312->3656->1828->914->457->1372->686->343->1030->515->1546->773->2320->1160->580->290->145->436->218->109->328->164->82->41->124->62->31->94->47->142->71->214->107->322->161->484->242->121->364->182->91->274->137->412->206->103->310->155->466->233->700->350->175->526->263->790->395->1186->593->1780->890->445->1336->668->334->167->502->251->754->377->1132->566->283->850->425->1276->638->319->958->479->1438->719->2158->1079->3238->1619->4858->2429->7288->3644->1822->911->2734->1367->4102->2051->6154->3077->9232->4616->2308->1154->577->1732->866->433->1300->650->325->976->488->244->122->61->184->92->46->23->70->35->106->53->160->80->40->20->10->5->16->8->4->2->1
6.126916 seconds (7.41 M allocations: 3.104 GiB, 1.67% gc time)
Another recreational math exercise without any application? If you can think of one, please let me know ;).