
Concatenated MNIST (CMNIST)
Making 784 pixels challenging again

Simon Wenkel∗

September 24, 2019

The MNIST dataset is around for 25 years, it remains a standard bench-
mark in many publications. Modern approaches reach error rates of <1%
on this dataset, however small variations can lead to significant accuracy
losses. To motivate the research community to research and develop better
algorithms for representation learning, we introduce CMNIST. CMNIST
is a dataset that contains 134 subsets which are generated from existing
MNIST-like datasets by concatenating them to provide a much more chal-
lenging dataset while keeping it within 784 pixels (28x28). Furthermore,
we provide baseline results for some of the CMNIST subsets.

1 Introduction
Using deep neural networks is the state-of-the-art approach to classify images. The MNIST
dataset [1] is 25 years old [2] and was a reasonable challenging problem back in the days. It
still remains a reasonable challenging dataset for many classical machine learning algorithms
[3]. However, with the rise of deep neural networks and almost ubiquitous application of deep
convolutional neural networks it became the “hello world” of machine learning. Nevertheless,
it remains one of the most popular benchmark datasets used in many state-of-the-art machine
learning publications [4].
A general question about machine learning datasets is the question if a dataset is obsolete or, in

other words, can we define a point at which a dataset is no longer useful as a benchmark because
the underlying problem could be considered as solved. With MNIST, we could agree on calling
it obsolete because error rates are really low (< 1%). From a practical, non-research perspective
these error rates are low enough to question the meaningfulness of further improvements. While
developing and testing new algorithms and model architectures, we have to keep in mind that we
are aiming to use representation learning and not dataset memorization. However, when applying
small variations to the MNIST dataset (e.g. adding noise, affine transformations, etc.) or when
testing a model (trained with MNIST images) on a larger test set, we observe a significant drop in
model accuracies [2, 5–7]. We could interpret this as overfitting to the MNIST dataset similar to
what have been shown for CIFAR-10 and ImageNet [8, 9]. This assumption is proved by Yadav
& Bottou [2] as a result of reconstructing the original test set MNIST is based on, which itself
resulted in the QMNIST dataset (Section 3.2). Therefore, we have to question if the (current)
research on computer vision and usage of MNIST really leads to (better) representation learning
or, accidentally, results in memorization.
There are ongoing discussions about if shapes or textures are dominant to a deep convolutional

neural network. While many researchers came to the conclusion that shape is more dominant,
Geirhos et al. [10] showed that texture might be much more dominant. This sensitivity to

∗CryoPred OÜ, Tallinn, Estonia
simon{}simonwenkel.com

1

textures would explain adversarial attacks much better because many look invisible for humans.
Considering that many neural networks are pre-trained on a subset of 1000 classes of ImageNet
[11], we can assume that many of their limitations and failure cases are similar. Furthermore,
research shows that some models performing extremely well on ImageNet do not necessarily
outperform other approaches on MNIST. Nevertheless, many pre-trained models score high on
MNIST-like datasets (Figure 1.1).
In contrast, a rather simple experiment of concatenating three MNIST-like datasets1, namely

EMNIST-MNIST, EMNIST-Letters (Section 3.4), and KMNIST (Section 3.5) shows a significant
drop in model accuracies2 for (pre-trained) models that perform reasonable well on each individual
dataset but produce significantly worse results on the combined dataset (Figure 1.1). This is
surprising, because, from a human perspective, all characters seem to be distinguishable easily,
except for very few classes like “O”,“o”,“0” or “L”,“l”,“1”. Further, we could assume that a model
that initially was trained for 1000 classes of relative small RGB images should be able to classify
46 different symbols that don’t look a like.

CMNIST-3-EElKm EMNIST-MNIST EMNIST-Letters KMNIST
Dataset

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Model
SqueezeNetv1_1
ResNet18
ResNet50

Figure 1.1: Comparison of model accuracies on single datasets and a
concatenated version (CMNIST-3-EElKm)

2 The MNIST dilemma
At this point we are not going to discuss if the models we selected are the most suitable for MNIST
or not. Academic research and industrial research, if published, needs some public benchmarks
for evaluation comparison of new algorithms and model structures. Period. Benchmark datasets
vary from discipline to discipline, and a very common benchmark dataset for computer vision
is the MNIST dataset. It almost doesn’t matter that it hardly represents a real and unsolved
computer vision challenge. The error rates of the best models are so low that it is difficult to
distinguish them from human performance. Similarly, deep learning has lead to human level
performance on many other benchmark datasets. We reached a point at which it seems almost
impossible to develop new architectures and algorithms that perform bad on MNIST or other
common benchmarks. As mentioned before, we need some form of common benchmark dataset

1This dataset became CMNIST-3-EElKm.
2Accuracy is not weighted for class imbalances.

2

to compare algorithms. Therefore, drop-in replacements, such as Fashion-MNIST (Section 3.7),
have been published to allow for such a direct comparison, but on a slightly more challenging
dataset. This led to a phenomena that both MNIST and Fashion-MNIST benchmark results are
provided for new architectures among other standard benchmarks.
Besides all disadvantages of a toy dataset, it provides a good basis for developing new algorithms

because MNIST itself and MNIST-like datasets are relatively easy to understand from a human
perspective and therefore make algorithm development debug-able. This makes it a lot easier
to develop new algorithms that are more sophisticated. A recent example are Capsule Neural
Networks which are able to separate overlapping digits [12, 13].
Therefore, we have to ask ourselves why we shouldn’t use the benefits of MNIST-like datasets

and combine them. Concatenating these datasets leads to more challenging benchmarks while
preserving the benefits of using MNIST.

3 Existing MNIST-like datasets
Before we start concatenating datasets, we have to have a look at datasets available and decide
if it makes sense to include them in CMNIST subsets or not.

3.1 MNIST
The original, well-known MNIST dataset, which resulted in LeNet-5[14], originates from the
NIST (National Institute of Standards and Technology) Special Database 19. Single digits from
scans were pre-processed into images of 28x28 pixels. The original dataset provides 6000 training
examples per class and 1000 test examples per class. To achieve better representation learning,
instead of memorization, a MNIST version with reduced training sets was introduced in 2017
[15]. It is called Reduced MNIST (RMNIST)3 and provides training sets of sizes 1,5, and 10 per
class. We are not going to include MNIST into the CMNIST dataset because we are going to use
the full EMNIST dataset which provides a MNIST-like subset anyhow.

3.2 QMNIST
Recently, a proper “forensic analysis” was carried out to find missing samples from the original
dataset that were excluded from MNIST to reduce dataset size to match computational require-
ments back in the days. Besides introducing a few more samples that were not used in MNIST,
the QMNIST paper [2] reveals a lot about the generation of MNIST4 Further, the authors figured
out that MNIST-trained algorithms are likely to overfit to the MNIST test set. They observed a
drop in accuracy of < 1%. However, we have to ask ourselves if this matters at all. Does it solve
any real problems? Can we achieve better representation learning by adding a few more digits
to the test set? Since we include EMNIST, we are going to provide more digit examples anyhow
and therefore are not going to include QMNIST in CMNIST dataset.

3.3 notMNIST
notMNIST [16] is a dataset that was generated from existing fonts. The letters A to J were
used instead of the digits 0 to 9 (Figure 3.1). It was intended as a more challenging MNIST
replacement. However, the dataset is a bit larger than MNIST. Therefore, we are going to use a
reduced set of notMNIST5 for CMNIST.

3https://github.com/mnielsen/rmnist
4The “forensic code” is available on GitHub: https://github.com/facebookresearch/qmnist.
5https://github.com/davidflanagan/notMNIST-to-MNIST

3

https://github.com/mnielsen/rmnist
https://github.com/facebookresearch/qmnist
https://github.com/davidflanagan/notMNIST-to-MNIST

Figure 3.1: Example training images from notMNIST

3.4 EMNIST
Extended MNIST (EMNIST) [17] is a more serious replacement for MNIST. It contains six
subsets (Table 3.1) derived from the same database as MNIST. These subsets include letters and,
depending on the subset, upper and lower case letters were separated to generate different classes
(Figure 3.2). This introduces a new level of complexity for MNIST-like performance evaluation.
Furthermore, it introduces unbalanced classes to make things a bit more challenging, even for
potential humans in a feedback loop. For example, it is unclear if the image in the lower left
corner in Figure 3.2f really belongs to class “n”, or if it belongs to another class (e.g. “N”).

4

Table 3.1: EMNIST subsets

Subset No. classes Classes Train set size Test set size Balanced classes
MNIST 10 0, 1, 2, 3, 4, 5, 6,

7, 8, 9
60k 10k True

Digits 10 0, 1, 2, 3, 4, 5, 6,
7, 8, 9

240k 40k True

Letters 26 A, B, C, D, E, F,
G, H, I, J, K, L,
M, N, O, P, Q, R,
S, T, U, V, W, X,
Y, Z

88.8k 14.8k True

Balanced 47 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C,
D, E, F, G, H, I,
J, K, L, M, N, O,
P, Q, R, S, T, U,
V, W, X, Y, Z, a,
b, d, e, f, g, h, n,
q, r, t

112.8k 18.8k True

By-merge 47 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C,
D, E, F, G, H, I,
J, K, L, M, N, O,
P, Q, R, S, T, U,
V, W, X, Y, Z, a,
b, d, e, f, g, h, n,
q, r, t

697932 116323 False

By-class 62 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C,
D, E, F, G, H, I,
J, K, L, M, N, O,
P, Q, R, S, T, U,
V, W, X, Y, Z, a,
b, c, d, e, f, g, h,
i, j, k, l, m, n, o,
p, q, r, s, t, u, v,
w, x, y, z

697932 116323 False

5

3 9 7 1 8

4 2 5 9 8

9 9 4 5 5

9 6 2 6 5

0 5 0 9 9

(a) Training set
examples
EMNIST-MNIST

3 9 4 9 8

2 6 7 9 0

2 3 2 6 2

7 3 7 7 8

4 5 9 4 2

(b) Training set
examples
EMNIST-Digits

P P M Y Y B

G Z O T I M

K G S T T R

A J A Z M M

B E R Q Q M

O N N P B H

(c) Training set
examples
EMNIST-Letters

M 4 I K L Y t J

W N Q g F M E M

5 C 6 t G O O B

P r V U r 9 t g

e Z C N g E t n

n d 0 U J r I a

h t M 3 I r A V

G d q S P r b K

(d) Training set
examples
EMNIST-Balanced

U M 7 6 K 9 8 t

F I 8 3 e t 5 7

1 0 U W 2 e 6 1

1 4 4 2 S 7 1 L

1 L 8 2 n F J 0

1 0 8 R R 6 T 9

8 h 4 4 5 O A b

3 I 4 L 5 a 2 r

(e) Training set
examples
EMNIST-By-merge

x 3 1 i e V 7 h

4 0 0 e S V n 1

0 3 W 7 F z 5 3

3 t h 2 5 5 8 h

O 9 7 v o 2 4 L

3 0 8 3 8 8 2 3

c 8 4 n 6 2 9 0

n 4 k 0 0 S F 5

(f) Training set
examples
EMNIST-By-class

Figure 3.2: Example training images from all six EMNIST subsets

3.5 Kuzushiji-MNIST
The Kuzushiji dataset is a drop-in replacement for the MNIST dataset that consists of historic
Japanese letters [18]. The target variables are modern days equivalents of these letters. The
Kuzushiji dataset consists of three subsets:

• Kuzushiji-MNIST (KMNIST)

• Kuzushiji-49 (K49)

• Kusuzhiji-Kanji.

KMNIST consists of 10 classes and has a similar setup as MNIST (Figure 3.3). Both KMNIST
and K49 contain Hiragana letters, Kuzushiji-Kanji contains Kanji letters. Kuzushiji-49 is a highly
imbalanced dataset, whereas KMNIST consists of 10 balanced classes. Unlike KMNIST and K49,
Kuzushiji-Kanji is highly imbalanced and not pre-splitted into train and test since it contains
some classes with a single example only. Therefore, we include KMNIST and K49 only.

6

Figure 3.3: Example training images from Kuzushiji-KMNIST

3.6 Kannada-MNIST
Kannada-MNIST is another non-western symbols MNIST dataset [19]. It is a dataset that con-
tains symbols from the Kannada language which is the official language in the state of Karnataka
in India. It follows the MNIST layout and therefore provides 10 classes with 6000 training ex-
amples each (Figure 3.4). It comes with two test sets, however, we are going to include the
Kannada-MNIST test set only.

3.7 Fashion-MNIST
Fashion-MNIST is another drop-in replacement for MNIST [20]. It originates from Zalando
research and contains 10 classes of different clothing images (Figure 3.5). Each sample is a gray
scale image in MNIST size. A public benchmark services is offered by the authors of this dataset
[3].

7

Figure 3.4: Example training images from Kannada-MNIST

3.8 Honorable mentions
Many other datasets were published that use some kind of MNIST-like image format. A prominent
example is Quick, Draw! by Google. Quick, Draw! is a dataset of quick drawings (doodles). The
trace of the mouse pointer is recorded. However, MNIST-like dumps are offered6 as well.

Another interesting example is the HASYv2 dataset [21]. It contains 168233 samples of 369
classes of different handwritten (mathematical) symbols. Unlike other MNIST-like datasets, it
utilizes an image size of 32x32.
MultiMNIST is an approach to create overlapping digits within the limitations of MNIST

using digits from MNIST. This dataset was generated and used to demonstrate that capsule
neural networks can separate individual, overlapping digits and classify them correctly [12].

6https://github.com/googlecreativelab/quickdraw-dataset/issues/19

8

https://github.com/googlecreativelab/quickdraw-dataset/issues/19

Figure 3.5: Example training images from Fashion-MNIST

4 Introducing CMNIST
With CMNIST, we don’t provide any new data to the research community. However, we concate-
nate existing datasets to create more challenging datasets7. The licenses of the original datasets
and the original datasets themselves remain unchanged.

4.1 CMNIST structure
CMNIST is structured in a way that it remains expandable. Each MNIST-like dataset used
for CMNIST gets an abbreviation (Table 4.1). The final dataset name consists of the prefix
“CMNIST-”, followed by a number stating how many datasets have been concatenated. The
abbreviations follow in alphabetical order afterwards. Therefore, the dataset “CMNIST-2-EF” is
generated from two datasets, namely EMNIST-MNIST and Fashion-MNIST.

7CMNIST generator script available on GitLab: https://gitlab.com/simonwenkel/cmnist.

9

https://gitlab.com/simonwenkel/cmnist

Combining these datasets without overlapping classes, results in 134 CMNIST subsets (Table
4.2). Despite offering a variety of extendable dataset combinations, we provide a baseline dataset.
CMNIST-X is a reference dataset that originally was generated by random selection of classes
across all MNIST-like datasets used to generate CMNIST datasets. We sampled 2 and 4 classes
from EMNIST-MNIST, EMNIST-Letters, fashionMNIST, KMNIST and notMNIST, resulting in
the CMNIST-X-12 (Figure 4.1a) and CMNIST-X-24 subsets (Figure 4.1b).
Similar to RMNIST (reduced MNIST), we propose to used reduced training sets as well. The

test sets remain untouched. Reduced CMNIST subsets are named using the convention CMNIST-
{}-{}-r-{train sample per class}.

Table 4.1: Subset nomenclature for concatenating MNIST-like datasets
Dataset Subset Abbreviation
EMNIST MNIST E
EMNIST Digits Ed
EMNIST Letters El
EMNIST Balanced Eb
EMNIST By-merge Em
EMNIST By-class Ec
Fashion-MNIST - F
Kannada-MNIST - Kd
Kuzushiji KMNIST Km
Kuzushiji K49 K49
notMNIST - N

(a) CMNIST-X-12 examples (b) CMNIST-X-24 examples

Figure 4.1: Example training images from CMNIST-X sets

10

Table 4.2: Overview of CMNIST subsets
Subset Balanced No. classes Subset Balanced No. classes

CMNIST-2-EEl No 36 CMNIST-2-EF Yes 20
CMNIST-2-EK49 No 59 CMNIST-2-EKd Yes 20
CMNIST-2-EKm Yes 20 CMNIST-2-EN Yes 20
CMNIST-2-EbF No 57 CMNIST-2-EbK49 No 96
CMNIST-2-EbKd No 57 CMNIST-2-EbKm No 57
CMNIST-2-EcF No 72 CMNIST-2-EcK49 No 111
CMNIST-2-EcKd No 72 CMNIST-2-EcKm No 72
CMNIST-2-EdEl No 36 CMNIST-2-EdF No 20
CMNIST-2-EdK49 No 59 CMNIST-2-EdKd No 20
CMNIST-2-EdKm No 20 CMNIST-2-EdN No 20
CMNIST-2-ElF No 36 CMNIST-2-ElK49 No 75
CMNIST-2-ElKd No 36 CMNIST-2-ElKm No 36
CMNIST-2-EmF No 57 CMNIST-2-EmK49 No 96
CMNIST-2-EmKd No 57 CMNIST-2-EmKm No 57
CMNIST-2-FK49 No 59 CMNIST-2-FKd Yes 20
CMNIST-2-FKm Yes 20 CMNIST-2-FN Yes 20
CMNIST-2-K49N No 59 CMNIST-2-KdK49 No 59
CMNIST-2-KdKm Yes 20 CMNIST-2-KdN Yes 20
CMNIST-2-KmN Yes 20 CMNIST-3-EElF No 46
CMNIST-3-EElK49 No 85 CMNIST-3-EElKd No 46
CMNIST-3-EElKm No 46 CMNIST-3-EFK49 No 69
CMNIST-3-EFKd Yes 30 CMNIST-3-EFKm Yes 30
CMNIST-3-EFN Yes 30 CMNIST-3-EK49N No 69
CMNIST-3-EKdK49 No 69 CMNIST-3-EKdKm Yes 30
CMNIST-3-EKdN Yes 30 CMNIST-3-EKmN Yes 30
CMNIST-3-EbFK49 No 106 CMNIST-3-EbFKd No 67
CMNIST-3-EbFKm No 67 CMNIST-3-EbKdK49 No 106
CMNIST-3-EbKdKm No 67 CMNIST-3-EcFK49 No 121
CMNIST-3-EcFKd No 82 CMNIST-3-EcFKm No 82
CMNIST-3-EcKdK49 No 121 CMNIST-3-EcKdKm No 82
CMNIST-3-EdElF No 46 CMNIST-3-EdElK49 No 85
CMNIST-3-EdElKd No 46 CMNIST-3-EdElKm No 46
CMNIST-3-EdFK49 No 69 CMNIST-3-EdFKd No 30
CMNIST-3-EdFKm No 30 CMNIST-3-EdFN No 30
CMNIST-3-EdK49N No 69 CMNIST-3-EdKdK49 No 69
CMNIST-3-EdKdKm No 30 CMNIST-3-EdKdN No 30
CMNIST-3-EdKmN No 30 CMNIST-3-ElFK49 No 85
CMNIST-3-ElFKd No 46 CMNIST-3-ElFKm No 46
CMNIST-3-ElKdK49 No 85 CMNIST-3-ElKdKm No 46
CMNIST-3-EmFK49 No 106 CMNIST-3-EmFKd No 67
CMNIST-3-EmFKm No 67 CMNIST-3-EmKdK49 No 106
CMNIST-3-EmKdKm No 67 CMNIST-3-FK49N No 69
CMNIST-3-FKdK49 No 69 CMNIST-3-FKdKm Yes 30
CMNIST-3-FKdN Yes 30 CMNIST-3-FKmN Yes 30
CMNIST-3-KdK49N No 69 CMNIST-3-KdKmN Yes 30
CMNIST-4-EElFK49 No 95 CMNIST-4-EElFKd No 56
CMNIST-4-EElFKm No 56 CMNIST-4-EElKdK49 No 95
CMNIST-4-EElKdKm No 56 CMNIST-4-EFK49N No 79
CMNIST-4-EFKdK49 No 79 CMNIST-4-EFKdKm Yes 40
CMNIST-4-EFKdN Yes 40 CMNIST-4-EFKmN Yes 40
CMNIST-4-EKdK49N No 79 CMNIST-4-EKdKmN Yes 40
CMNIST-4-EbFKdK49 No 116 CMNIST-4-EbFKdKm No 77
CMNIST-4-EcFKdK49 No 131 CMNIST-4-EcFKdKm No 92
CMNIST-4-EdElFK49 No 95 CMNIST-4-EdElFKd No 56
CMNIST-4-EdElFKm No 56 CMNIST-4-EdElKdK49 No 95
CMNIST-4-EdElKdKm No 56 CMNIST-4-EdFK49N No 79
CMNIST-4-EdFKdK49 No 79 CMNIST-4-EdFKdKm No 40
CMNIST-4-EdFKdN No 40 CMNIST-4-EdFKmN No 40
CMNIST-4-EdKdK49N No 79 CMNIST-4-EdKdKmN No 40
CMNIST-4-ElFKdK49 No 95 CMNIST-4-ElFKdKm No 56
CMNIST-4-EmFKdK49 No 116 CMNIST-4-EmFKdKm No 77
CMNIST-4-FKdK49N No 79 CMNIST-4-FKdKmN Yes 40
CMNIST-5-EElFKdK49 No 105 CMNIST-5-EElFKdKm No 66
CMNIST-5-EFKdK49N No 89 CMNIST-5-EFKdKmN Yes 50
CMNIST-5-EdElFKdK49 No 105 CMNIST-5-EdElFKdKm No 66
CMNIST-5-EdFKdK49N No 89 CMNIST-5-EdFKdKmN No 50
CMNIST-X-12 No 12 CMNIST-X-24 No 24

5 Baseline results
A major problem in machine learning research remains reproducibility of results. Even little
things like not defining random states can lead to slightly different results. Therefore, we use the
fastai framework8 with the following settings:

all random states initiated with ``seed = 1''
ds_tfms = get_transforms(do_flip=False, flip_vert=False)
data = ImageDataBunch.from_df("", train_df, ds_tfms=ds_tfms, size=28, bs=1024)
learn = cnn_learner(data, model, metrics=accuracy)
learn.lr_find(start_lr=1e-6, end_lr=1e1, stop_div=True, num_it=100)
lr = learn.recorder.min_grad_lr
learn.fit_one_cycle(20, lr)

8https://github.com/fastai/fastai

11

https://github.com/fastai/fastai

We used ResNet18, ResNet50, and SqueezeNet v1.1 models pre-trained on ImageNet. Ad-
ditionally, we tested tested simple k-Nearest Neighbors as an additional baseline result on the
reduced training datasets (CMNIST-r-) (Figures 5.1,5.2).
The reduced CMNIST subsets show a lot of interesting and somehow seemingly weird results

for different models. On the CMNIST subsets that use full training sets, we can observe, that
the accuracy of ResNet50 is mostly slightly higher than ResNet18 and that using ResNet18 leads
to much better results than SqueezeNet (Figure 5.3). However, the performance on the reduced
datasets is different. While kNN seems to be the best choice in most cases, the performance of
the neural networks is somewhat less clear (Figures 5.1,5.2). SqueezeNet seem to perform better
than ResNet with small datasets.

CMNIST-X-12-r-5 CMNIST-X-12-r-10 CMNIST-X-12-r-50 CMNIST-X-12-r-100
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
SqueezeNetv1_1
ResNet18
ResNet50
KNN

CMNIST-X-24-r-5 CMNIST-X-24-r-10 CMNIST-X-24-r-50 CMNIST-X-24-r-100
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
SqueezeNetv1_1
ResNet18
ResNet50
KNN

Figure 5.1: Example training images from all six EMNIST subsets

6 Discussion and Conclusions
We propose a new kind of dataset that is not another MNIST dataset but but provides signifi-
cantly more challenging subsets. However, we have to remind ourselves that once the class count
increases, the accuracies will increase because a rather small subset of difficult classes doesn’t
influence the overall accuracy so much. The results of models pretrained on ImageNet, which
has >20000 classes - or 1000 in its reduced form, is less satisfactory. Even a rather simple exten-
sion of MNIST results in a significant loss of accuracy compared to a standard MNIST problem.
Therefore, we could assume that widely deployed neural network architectures are less suitable
for representation learning. This could explain sensitivities to textures and therefore explain the
simplicity of various adversarial attacks. With CMNIST, we hope to provide a better basis for
research of new neural network architectures such as capsule networks or even biological neural
networks (e.g. Moth Olfactory Networks [22]).

12

CMNIST-2-EF-r-5 CMNIST-2-EF-r-10 CMNIST-2-EF-r-50 CMNIST-2-EF-r-100
Dataset

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Model
SqueezeNetv1_1
ResNet18
ResNet50
KNN

CMNIST-2-EmF-r-5 CMNIST-2-EmF-r-10 CMNIST-2-EmF-r-50 CMNIST-2-EmF-r-100
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
SqueezeNetv1_1
ResNet18
ResNet50
KNN

CMNIST-2-KdKm-r-5 CMNIST-2-KdKm-r-10 CMNIST-2-KdKm-r-50 CMNIST-2-KdKm-r-100
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
SqueezeNetv1_1
ResNet18
ResNet50
KNN

CMNIST-3-EdElKm-r-5 CMNIST-3-EdElKm-r-10 CMNIST-3-EdElKm-r-50 CMNIST-3-EdElKm-r-100
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
SqueezeNetv1_1
ResNet18
ResNet50
KNN

CMNIST-3-EElKm-r-5 CMNIST-3-EElKm-r-10 CMNIST-3-EElKm-r-50 CMNIST-3-EElKm-r-100
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
SqueezeNetv1_1
ResNet18
ResNet50
KNN

CMNIST-3-KdKmN-r-5 CMNIST-3-KdKmN-r-10 CMNIST-3-KdKmN-r-50 CMNIST-3-KdKmN-r-100
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
SqueezeNetv1_1
ResNet18
ResNet50
KNN

CMNIST-5-EElFKdK49-r-5 CMNIST-5-EElFKdK49-r-10 CMNIST-5-EElFKdK49-r-50 CMNIST-5-EElFKdK49-r-100
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
SqueezeNetv1_1
ResNet18
ResNet50
KNN

Figure 5.2: Example training images from all six EMNIST subsets

13

CM
NI

ST
-X

-1
2

CM
NI

ST
-X

-2
4

CM
NI

ST
-3

-E
dE

lK
m

CM
NI

ST
-3

-E
El

Km
CM

NI
ST

-2
-K

dK
m

CM
NI

ST
-2

-E
m

F
CM

NI
ST

-2
-E

F
CM

NI
ST

-3
-K

dK
m

N
CM

NI
ST

-5
-E

El
FK

dK
49

EM
NI

ST
-M

NI
ST

EM
NI

ST
-D

ig
its

EM
NI

ST
-L

et
te

rs
Fa

sh
io

n-
M

NI
ST

KM
NI

ST
Ka

nn
ad

a
no

tM
NI

ST
Da

ta
se

t

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Accuracy

M
od

el
Sq

ue
ez

eN
et

v1
_1

Re
sN

et
18

Re
sN

et
50

Figure 5.3: Comparison of model accuracies on single datasets and a
concatenated version (CMNIST-3-EElKm)

14

References
[1] Y. LeCun, C. Cortes, and C. J. C. Burges. THE MNIST DATABASE of handwritten digits.

1994. url: http://yann.lecun.com/exdb/mnist/.
[2] C. Yadav and L. Bottou. Cold Case: The Lost MNIST Digits. 2019. arXiv: 1905.10498.
[3] Zalando SE. MNIST and Fashion-MNIST Benchmarks. 2017. url: http : / / fashion -

mnist.s3-website.eu-central-1.amazonaws.com/.
[4] B. Hammer. Popular Datasets Over Time. 2017. url: https://www.kaggle.com/benhamner/

popular-datasets-over-time?scriptVersionId=1879813.
[5] S. Basu, M. Karki, S. Ganguly, R. DiBiano, S. Mukhopadhyay, S. Gayaka, R. Kannan,

and R. Nemani. “Learning Sparse Feature Representations Using Probabilistic Quadtrees
and Deep Belief Nets”. In: Neural Processing Letters 45.3 (Sept. 2016), pp. 855–867. doi:
10.1007/s11063-016-9556-4.

[6] D. C. Castro, J. Tan, B. Kainz, E. Konukoglu, and B. Glocker. Morpho-MNIST: Quantita-
tive Assessment and Diagnostics for Representation Learning. 2018. arXiv: 1809.10780v2.

[7] G. W. Ding, K. Y. C. Lui, X. Jin, L. Wang, and R. Huang. On the Sensitivity of Adversarial
Robustness to Input Data Distributions. 2019. arXiv: 1902.08336v1.

[8] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do CIFAR-10 Classifiers Generalize to
CIFAR-10? 2018. arXiv: 1806.00451v1.

[9] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do ImageNet Classifiers Generalize to
ImageNet? 2019. arXiv: 1902.10811v2.

[10] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel.
“ImageNet-trained CNNs are biased towards texture; increasing shape bias improves ac-
curacy and robustness.” In: International Conference on Learning Representations. 2019.
url: https://openreview.net/forum?id=Bygh9j09KX.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: CVPR09. 2009.

[12] S. Sabour, N. Frosst, and G. E. Hinton. “Dynamic Routing Between Capsules”. In: Advances
in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc., 2017,
pp. 3856–3866. url: http://papers.nips.cc/paper/6975-dynamic-routing-between-
capsules.pdf.

[13] G. E. Hinton, S. Sabour, and N. Frosst. “Matrix capsules with EM routing”. In: Interna-
tional Conference on Learning Representations. 2018. url: https://openreview.net/
forum?id=HJWLfGWRb.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to docu-
ment recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/
5.726791.

[15] M. Nielsen. Reduced MNIST: how well can machines learn from small data? 2017. url:
http://cognitivemedium.com/rmnist.

[16] Y. Bulatov. notMNIST dataset. 2011. url: https://yaroslavvb.blogspot.com/2011/
09/notmnist-dataset.html.

[17] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. EMNIST: an extension of MNIST to
handwritten letters. 2017. arXiv: 1702.05373v2.

[18] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and D. Ha. Deep
Learning for Classical Japanese Literature. 2018. doi: 10.20676/00000341. arXiv: 1812.
01718v1.

15

http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1905.10498
http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/
http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/
https://www.kaggle.com/benhamner/popular-datasets-over-time?scriptVersionId=1879813
https://www.kaggle.com/benhamner/popular-datasets-over-time?scriptVersionId=1879813
https://doi.org/10.1007/s11063-016-9556-4
https://arxiv.org/abs/1809.10780v2
https://arxiv.org/abs/1902.08336v1
https://arxiv.org/abs/1806.00451v1
https://arxiv.org/abs/1902.10811v2
https://openreview.net/forum?id=Bygh9j09KX
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules.pdf
https://openreview.net/forum?id=HJWLfGWRb
https://openreview.net/forum?id=HJWLfGWRb
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://cognitivemedium.com/rmnist
https://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
https://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
https://arxiv.org/abs/1702.05373v2
https://doi.org/10.20676/00000341
https://arxiv.org/abs/1812.01718v1
https://arxiv.org/abs/1812.01718v1

[19] V. U. Prabhu. Kannada-MNIST: A new handwritten digits dataset for the Kannada lan-
guage. 2019. arXiv: 1908.01242v1.

[20] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms. 2017. arXiv: arXiv:1708.07747.

[21] M. Thoma. The HASYv2 dataset. 2017. arXiv: 1701.08380.
[22] C. B. Delahunt and J. N. Kutz. “Putting a bug in ML: The moth olfactory network learns

to read MNIST”. In: Neural Networks 118 (2019), pp. 54–64. doi: 10.1016/j.neunet.
2019.05.012.

©Simon Wenkel
This pdf is licensed under the CC BY-SA 4.0 license.

16

https://arxiv.org/abs/1908.01242v1
https://arxiv.org/abs/arXiv:1708.07747
https://arxiv.org/abs/1701.08380
https://doi.org/10.1016/j.neunet.2019.05.012
https://doi.org/10.1016/j.neunet.2019.05.012
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	The MNIST dilemma
	Existing MNIST-like datasets
	MNIST
	QMNIST
	notMNIST
	EMNIST
	Kuzushiji-MNIST
	Kannada-MNIST
	Fashion-MNIST
	Honorable mentions

	Introducing CMNIST
	CMNIST structure

	Baseline results
	Discussion and Conclusions

