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What you (don’t) get in this talk

No recommendations what language to use (R, Python, Julia, C, Fortran,
etc.) but things to consider when (re)-designing a product from scratch

Simon Wenkel R - Python - Julia 5 / 53



Benchmark disclaimer

setup often unclear
generic code vs. hand-optimized
micro-benchmarks vs. end-to-end benchmark
data set properties not well documented

... but from personal experience: most benchmark results give good
indications ...
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(High performance) production environments

fundamental trade-offs
implementation time vs. run-time performance
salaries vs. infrastructure costs

challenges
licensing issues (e.g. some Boost (C++) libraries)/dependency hell
prototyping speed
performance issues with interpreted languages
program in C/C++/F03 and make it fast, secure and memory safe

general setting
“manual workflow”: 1 hour vs. 7 day coffee break
max. allowed runtime - product useless otherwise

implications of (simple) 10x speed-ups (R/Python/Julia)
(if all bottlenecks are fixed)
serving the same amount of customers with a fraction of hardware
if real-time requirements: product/no product
much faster prototyping
no C/C++ conversion department needed
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Introducing Julia (1)

“[...] We’ve generated more R plots than any sane person should. C is
our desert island programming language.
We love all of these languages; they are wonderful and powerful. For the work
we do — scientific computing, machine learning, data mining,
large-scale linear algebra, distributed and parallel computing — each
one is perfect for some aspects of the work and terrible for others. Each one
is a trade-off. [...]

We want a language that’s open source, with a liberal license. We want the
speed of C with the dynamism of Ruby. We want a language that’s
homoiconic, with true macros like Lisp, but with obvious, familiar
mathematical notation like Matlab. We want something as usable for
general programming as Python, as easy for statistics as R, as natural
for string processing as Perl, as powerful for linear algebra as Matlab, as
good at gluing programs together as the shell. Something that is dirt
simple to learn, yet keeps the most serious hackers happy. We want it
interactive and we want it compiled.[...]”

https://julialang.org/blog/2012/02/why-we-created-julia/

Simon Wenkel R - Python - Julia 9 / 53

https://julialang.org/blog/2012/02/why-we-created-julia/


Introducing Julia (2)

backed by MIT
many packages developed by US gov. (funded) institutions
not just another language - aims to solve a bunch of significant problems
mostly implemented in itself
very good packages for mathematical optimization (written in Julia
instead of Fortran 77)
strong use cases (so far): numerics, mathematical optimization
number of users in academia and industry grows rapidly

seems to start replacing Matlab
gets a lot of attention in math heavy industries (e.g. engineering,
finance/insurance)

seems to raise awareness in statistics, less in machine learning (yet)
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Introducing Julia - code example (1)
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Introducing Julia - code example (2)
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Introduction

Release
Year

1993 (S: 1976) 1990 2012

License GPL (v2)
(core + (most?)

packages),
(tidyverse: GPLv3,
MIT, on github:
copyright/no
license?)

PSFL
(packages: BSD,
MIT, Apache,

GPL)

MIT
(core + most
packages)

Typing
Discipline

dynamic duck, dynamic,
gradual

dynamic,
nominative,
parametric,
optional

Language
Type
(default)

interpreted interpreted compiled
JIT (via LLVM)
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Common features

can use Jupyter notebooks (and RMarkdown)

can use software written in other languages (FFIs)

Garbage collected
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A look under the hood

Are we really using what we
think we are using?
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Language source code - R

C and Fortran: almost the entire stdlib written in them
R: datasets, high-level functions/data structures, constants,
documentation, tests; not used for intense computing/math functions?
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Language source code - (C)Python

C/C++: almost the entire stdlib written in them, especially everything
performance critical
Python: high-level functions/classes/data structures, constants, some core
libraries, documentation, tests; not used for intense computing/math
functions
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Language source code - Julia

C/C++: core functions (system level, e.g. OS support), LLVM backend,
FFI (Foreign Function Interface)
Julia: almost everything else (incl. stdlib)
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Micro-Benchmarks

source: https://julialang.org/benchmarks/ [1]
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Micro-Benchmarks

https://julialang.org/benchmarks/ [1]
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How to make things fast and efficient

without re-writing our DS/ML pipelines in C/Fortran/CUDA/Rust/etc.

at almost no development costs (time)

aiming at orders of magnitude speed-ups (not a few percent improvement)

NB!: not going to focus on multi-threading or GPGPU
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Making things fast and efficient - Math Libraries

BLAS (Basic Linear Algebra Subprograms)
written in Fortran

ATLAS (Automatically Tuned Linear Algebra Software)
written in C, Fortran, Pascal, Assembly
faster than BLAS

OpenBLAS
optimized BLAS library written in Fortran, Assembly, C
much faster than BLAS and faster than ATLAS
OpenBLAS leads to 2-10x faster matrix computation in R!(as of 2013 ;))

Intel MKL (Math Kernel Library)
hand-optimized for Intel CPUs in C, C++, Fortran (+ Assembly?)
a bit/a lot faster than OpenBLAS depending on application and platform

tensorflow/core/platform/cpu_feature_guard.cc:145] This TensorFlow binary
is optimized with Intel(R) MKL-DNN to use the following CPU instructions
in performance critical operations: SSE4.1 SSE4.2 AVX

Other libs: ARPACK-NG, Eigen, LAPACK (with BLAS/ATLAS), cuBLAS,
clBLAS, Armadillo, Apple accelerate, ...
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Making things fast and efficient - Language level

1

best
practices

use correct
libraries, avoid

loops, use
functions, use

vectorization, don’t
use dplyr2 [3, 4, 5, 6]

use correct
libraries, avoid

loops, use
vectorization, don’t

use pandas

(type definitions),
use functions, think
twice beforce using

vectorization

JIT R-compiler 3,
R-JIT

(deprecated?), RIR

PyPy, Numba part of Julia

(C, C++,
etc.)
extension
generator

N/A? Cython not necessary

1contains more powerful optimization than Numba+Cython [2]
2according to it’s description: “A fast, consistent tool for working with data frame like objects, both in

memory and out of memory.”
3enabled since R 3.4.0, runs after the 1st or 2nd time a function is used [7]
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Choosing the correct library - “basic math”

running a mathematical function (e.g. sin(x)) on:
lists of various lengths
matrices (square) of various sizes
no return/output, only input and calculations
both reach sizes - should be split into smaller chunks for parallel processing

200 iterations per function and dataset
not a trivial benchmark that indicates advantages/disadvantages of loops
original idea: best Python library for different list/array size
NB!: Garbage Collection!
NB!: log-log plots!
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Choosing the correct library - Python “basic math” (1)

sin cos tan asin acos atan exp sinh cosh tanh abs ceil floor sqrt
Function
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TensorFlowCPU on Matrix_1000

https://www.simonwenkel.com/2020/01/05/python-math-benchmarks.html
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Choosing the correct library - Python “basic math” (2)

List_1 List_10 List_100 List_1000 List_10000 List_100000 List_1000000
Dataset
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NumPy
CPython
PyTorchCPU
PyTorchGPU
TensorFlowCPU

https://www.simonwenkel.com/2020/01/05/python-math-benchmarks.html
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Choosing the correct library - Python “basic math” (3)
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Dataset
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Choosing the correct library - R “basic math”

Matrix_1 Matrix_10 Matrix_100 Matrix_1000 Matrix_10000
Dataset
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TensorFlow CPU

single thread only
via py_call?
no direct C++
API usage?
GPU seems to
work
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“Basic math” language comparison (1)
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“Basic math” language comparison (2)
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Cython - toy example
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Cython - it’s not that easy

outside Jupyter notebooks:
precompilation with “setup.py”
high performance: aim at
“pure cython”
usage with NumPy slightly
more complicated
direct integration of C/C++
libraries
expect to spend a week to
learn and understand it
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A look under the hood - part 2

Are we really using what we
think we are using? - Part 2
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Common R libraries
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Common Python libraries
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Common Julia libraries
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Geospatial/Geostats - R

C C++ CUDA Julia Python R
rGDAL 6 % 45 % 0 % 0 % 0 % 36 %
sp 21 % 0 % 0 % 0 % 0 % 21 %
gstat 62 % 1 % 0 % 0 % 0 % 37 %
maptools 41 % 0 % 0 % 0 % 0 % 59 %
geoR 4 % 0 % 0 % 0 % 0 % 96 %
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Geospatial/Geostats - Python

Until 1-3 years ago, Python was used (almost) only as a gluetool for various
geospatial packages/GIS.

PostGIS: PostgreSQL and C
QGIS: written in C++ (+ Python for API)
GRASS GIS: written in C and C++ (+ Python for API)
SAGA: written in C++ and C
ESRI ArcGIS’s script environment/API migrated from VBA to Python
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Benchmarks

(there are so many benchmarks, and there is so much variance)
general

Julia up to 400 times faster than R

Python often 10 times faster than R

machine learning
Python/Scikit-learn up to 10 times faster than R/caret and with better
results

Python/mlpack is between 5 and 50 times faster than Python/Scikit-learn

Julia’s ML packages are between 2 slower and 400 times faster than
Python/Scikit-learn
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Language-independent packages (machine learning)

Performance matters!
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Gradient Boosting Libraries

C C++ CUDA Julia Python R
CatBoost 0 % 84 % 4 % 0 % 10 % 1 %
LightGBM 6 % 60 % 0? % 0 % 22 % 11 %
XGBoost 0 % 41 % 14 % 0 % 14 % 10 %
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Deep Learning Libraries

C C++ CUDA Julia Python R
Caffe 0 % 80 % 6 % 0 % 9 % 0 %
Chainer 0 % 10 % 2 % 0 % 76 % 0 %
Darknet 90 % 0 % 8 % 0 % 0 % 0 %
Deeplearning4j 0 % 29 % 4 % 0 % 1 % 0 %
Flux 0 % 0 % 0? % 100 % 0 % 0 %
MXNet 0 % 31 % 4 % 0 % 32 % 0 %
PyTorch 5 % 51 % 8 % 0 % 32 % 0 %
TensorFlow 0 % 61 % 0? % 0 % 31 % 0 %
Theano 5 % 0 % 1 % 0 % 94 % 0 %
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Considerations for production use (1)

General
what packages are available
define what you need in terms of performance
remember infrastructure and development costs
identify the skill set of team members
avoid writing packages in C/C++ (safety+security)
write benchmarks
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Considerations for production use (2)

use R
performance is not important
many legacy stats packages are needed
if performance is required: give tensorflow a chance
if current products are built around it
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Considerations for production use (3)

use Python
unified backend (incl. webservices) is required
machine learning is a key part (no way around Python(+C/C++/CUDA)
yet)
use PyTorch/TensorFlow or cython for heavy math
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Considerations for production use (4)

use Julia
if strong mathematical optimization across all packages is needed
clean from scratch implementation is required
pure performance is required
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Some suggestions to the R community

analysis of R: why is it so slow?

cython allows to deploy Python in production - anything cython-like for
R in development?

R as gluetool only?

benchmark packages (e.g. data.table vs DBMS)

R API for mlpack
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