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What you (don’t) get in this talk

e No recommendations what language to use (R, Python, Julia, C, Fortran,
etc.) but things to consider when (re)-designing a product from scratch

Simon Wenkel R - Python - Julia 5/53



Benchmark disclaimer

setup often unclear

generic code vs. hand-optimized

e micro-benchmarks vs. end-to-end benchmark

data set properties not well documented

... but from personal experience: most benchmark results give good
indications ...
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(High performance) production environments

e fundamental trade-offs

implementation time vs. run-time performance
salaries vs. infrastructure costs

o challenges

licensing issues (e.g. some Boost (C++) libraries)/dependency hell
prototyping speed

performance issues with interpreted languages

program in C/C++/F03 and make it fast, secure and memory safe

e general setting

“manual workflow”: 1 hour vs. 7 day coffee break

max. allowed runtime - product useless otherwise

e implications of (simple) 10x speed-ups (R/Python/Julia)

(if all bottlenecks are fized)

serving the same amount of customers with a fraction of hardware
if real-time requirements: product/no product

much faster prototyping

no C/C++ conversion department needed
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Introducing Julia (1)

“[...] We've generated more R plots than any sane person should. C is
our desert island programming language.

We love all of these languages; they are wonderful and powerful. For the work
we do — scientific computing, machine learning, data mining,
large-scale linear algebra, distributed and parallel computing — each
one is perfect for some aspects of the work and terrible for others. Each one
is a trade-off. [..

We want a language that’s open source, with a liberal license. We want the
speed of C with the dynamism of Ruby. We want a language that’s
homoiconic, with true macros like Lisp, but with obvious, familiar
mathematical notation like Matlab. We want something as usable for
general programming as Python, as easy for statistics as R, as natural
for string processing as Perl, as powerful for linear algebra as Matlab, as
good at gluing programs together as the shell. Something that is dirt
simple to learn, yet keeps the most serious hackers happy. We want it
interactive and we want it compiled.|...]”

https://julialang.org/blog/2012/02/why-we-created-julia/

Simon Wenkel R - Python - Julia 9/53


https://julialang.org/blog/2012/02/why-we-created-julia/

Introducing Julia (2)

@ backed by MIT

e many packages developed by US gov. (funded) institutions

@ not just another language - aims to solve a bunch of significant problems

e mostly implemented in itself

e very good packages for mathematical optimization (written in Julia
instead of Fortran 77)

e strong use cases (so far): numerics, mathematical optimization

e number of users in academia and industry grows rapidly

e seems to start replacing Matlab
o gets a lot of attention in math heavy industries (e.g. engineering,
finance/insurance)

e seems to raise awareness in statistics, less in machine learning (yet)
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Introducing Julia - code example (1)

using Csv
import Flux

db = SQLite.DB()
tbl = csv.File(file) |> sQLite.load!(db, "sqlite_table")

function add_one(Q::UInt8)
O+=1
return 0

add_one(a: :Floate4) = a+=1
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Introducing Julia - code example (2)

@time add_one(1)
@time add_one(1.)

struct airplane
model: :String
engine_ID::UInt64

dict = Dict("a" => 1, "b" => 3)
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Introduction

Release 1993 (S: 1976)
Year
License GPL (v2)
(core + (most?)
packages),
(tidyverse: GPLv3,
MIT, on github:
copyright /no
license?)
Typing dynamic
Discipline
Language interpreted
Type
(default)

Simon Wenkel

A

1990

PSFL
(packages: BSD,
MIT, Apache,
GPL)

duck, dynamic,
gradual

interpreted

R - Python - Julia

julia
2012

MIT
(core + most
packages)

dynamic,
nominative,
parametric,
optional
compiled
JIT (via LLVM)
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Common features

e can use Jupyter notebooks (and RMarkdown)

@ can use software written in other languages (FFIs)

e Garbage collected
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A look under the hood

Are we really using what we
think we are using?

R version 3.6.2 (2019-12-12) -- "Dark and Stormy Night"
Copyright (C) 2019 The R Foundation for Statistical Computing
Platform:

R is free software and comes ABSOLUTELY NO WARRANTY.
You are welcome to redist - ader certain conditions.
Type 'license()' or 'lid e()' for stribution details.

Natural language support but runn’ | in an English locale

R is a collaborative project wil lany contributors.
Type ‘contributors()' for morg .iformation and
"citation()' on how to cite F ~ R packages in publications

Type 'demo()' for some demos, ‘help()' for on-line help, or
'help.start()' for an HTML bi r interface to help.
Type 'q()' to quit R.

4 |
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Language source code - R

Hwch / r-source @Watch 87 kStar | 666 Yok 210

<> Code Pull requests @ Projects 0 Wiki Security Insights

Read-only mirror of R source code from https://svnr-projectorg/R/, updated hourly. See the build instructions on the wiki page.
https://github.com/wch/r-source/wiki/

D 54,621 commits i? 267 branches (710 packages 0 releases 422 0 contributors g GPL-2.0

®R37.2% ®C324% @ Fortran 23.6% Shell 1.2% M4 1.1% @ TeX 0.9% Other 3.6%

o C and Fortran: almost the entire stdlib written in them

e R: datasets, high-level functions/data structures, constants,
documentation, tests; not used for intense computing/math functions?
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Language source code - (C)Python

H python / cpython WSponsor | @Watch | 11k | #Star 285k ¥Fork | 129k

<> Cade Pull requests 1,038 Security Insights

The Python programming language  https://www.python.org/

P 106,042 commits i? 8 branches 9 0 packages > 413 releases 48 1,106 contributors oz View license

® Python 64.1% ®C2388% ® Objective-C 4.4% ®C++12% ® HTML 0.4% M4 0.4% Other 0.7%

o C/C++: almost the entire stdlib written in them, especially everything
performance critical

e Python: high-level functions/classes/data structures, constants, some core
libraries, documentation, tests; not used for intense computing/math
functions
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Language source code - Julia

H Julialang /julia @Sponsor | | @ Watch | 945 dStar 249k | YFork 3.7k
<> Code Issues 2,732 Pull requests 820 Projects 8 Security Insights
The Julia Language: A fresh approach to technical computing. https:/julialang.org/
julia-language  programming-language  scientific-computing  high-performance-computing  numerical-computation  machine-learning
D) 45,848 commits 15 814 branches [0 packages > 85 releases A1 903 contributors e View license
® Julia 68.4% ®C164% ®C++101% ® Scheme 3.2% ® Makefile 0.7% ®LLVM 0.4% Other 0.8%

o C/C++: core functions (system level, e.g. OS support), LLVM backend,
FFI (Foreign Function Interface)

e Julia: almost everything else (incl. stdlib)

Simon Wenkel R - Python - Julia 19 /53




Micro-Benchmarks

10*

10%

benchmark

® iteration_pi_sum

matrix_multiply
102 ® matrix_statistics

@ parse_integers
print_to_file

® recursion_fibonacci
recursion_quicksort
userfunc_mandelbrot

C Julia LuaJIT Rust Go Fortran Java JavaScript Matlab Mathematica Python R Octave

source: https://julialang.org/benchmarks/ [1]
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How to make things fast and efficient

e without re-writing our DS/ML pipelines in C/Fortran/CUDA /Rust/etc.
e at almost no development costs (time)
e aiming at orders of magnitude speed-ups (not a few percent improvement)

e NB!: not going to focus on multi-threading or GPGPU
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Making things fast and efficient - Math Libraries

e BLAS (Basic Linear Algebra Subprograms)

o written in Fortran

o ATLAS (Automatically Tuned Linear Algebra Software)

e written in C, Fortran, Pascal, Assembly
o faster than BLAS

e OpenBLAS

e optimized BLAS library written in Fortran, Assembly, C
o much faster than BLAS and faster than ATLAS
o OpenBLAS leads to 2-10x faster matrix computation in R!(as of 2013 ;))

o Intel MKL (Math Kernel Library)
o hand-optimized for Intel CPUs in C, C++, Fortran (+ Assembly?)
o a bit/a lot faster than OpenBLAS depending on application and platform
tensorflow/core/platform/cpu_feature_guard.cc:145] This TensorFlow binary

is optimized with Intel(R) MKL-DNN to use the following CPU instructions
in performance critical operations: SSE4.1 SSE4.2 AVX

Other libs: ARPACK-NG, Eigen, LAPACK (with BLAS/ATLAS), cuBLAS,
cIBLAS, Armadillo, Apple accelerate, ...
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Making things fast and efficient - Language level

R e julia 1

best use correct use correct (type definitions),
practices libraries, avoid libraries, avoid use functions, think
loops, use loops, use twice beforce using
functions, use vectorization, don’t vectorization
vectorization, don’t use pandas
use dplyr2 [3, 4, 5, 6]
JIT R-compiler 3, PyPy, Numba part of Julia
R-JIT
(deprecated?), RIR
(C, C++, N/A? Cython not necessary
etc.)
extension
generator

L contains more powerful optimization than Numba+ Cython [2]

according to it’s description: “A fast, consistent tool for working with data frame like objects, both in
memory and out of memory.”

enabled since R 3.4.0, runs after the 1st or 2nd time a function is used [7]
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Choosing the correct library - “basic math”

e running a mathematical function (e.g. sin(x)) on:

lists of various lengths

matrices (square) of various sizes

no return/output, only input and calculations

both reach sizes - should be split into smaller chunks for parallel processing

200 iterations per function and dataset

e not a trivial benchmark that indicates advantages/disadvantages of loops
original idea: best Python library for different list /array size

o NB!: Garbage Collection!

e NB!: log-log plots!
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Choosing the correct library - Python “basic math” (1)

TensorFlowCPU on Matrix_1000

0.008

0.007 -

0.006

°

0,005+ 5
2 o
g o
S 0.004 8
) o

HIBRERRD
td : $EeEg

sin cos. tan asin  acos atan  exp sinh  cosh tanh abs ceil floor  sqrt
Function
https://wwv.simonvenkel.com/2020/01/05/python-math-benchmarks .html

0.001 4
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Choosing the correct library - Python “basic math” (2)

Runtime [s]

e sece e o oo

. N §
‘i 1ot ;%,Q,:& :
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Library
— NumPy
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= PyTorchCPU
= PyTorchGPU
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Dataset

https://www.simonwenkel.com/2020/01/05/python-math-benchmarks . html
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Choosing the correct library - Python “basic math” (3)
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Choosing the correct library - R “basic math”

Library
R Base
== TensorFlow CPU

o single thread only

W e via py_call?
@ no direct C++
o API usage?
o GPU seems to
= work

Matrix_1 Matrix_10 Matrix_100

Matrix_1000 Matrix_10000
Dataset
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“Basic math” language comparison (1)

Mean Runtime [s]
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10-%

1077

Library

R Base

NumPy

CPython

Julia unoptimized

Rust (unoptimized/libm)

10°
List size
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“Basic math” language comparison (2)

Library
—— R Base
—— NumPy
100 | — CPython
—— Julia unoptimized
—— Rust (unoptimized/libm)
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Cython - toy example

1 def add_one(x): 1 def add(x):

2 y = 2 y=@a

3 for 1 in range(x): 3 for i in range(x):
4 y+=1 4 y+=i

1 %ktimeit 1 Kktimeit

2 add_one(1leoeee) 2 add(10e00@)

4.67 ms £ 19 ps per loop (mean + std. dev. of 7 runs, 467 ps + 4.19 ps per loop (mean t std. dev. of 7 runs,

1 %load_ext Cython 1 Zload_ext Cython
import Ccython import Cython

1 %kcython 1 %kcython

2 cpdef add_one_cython(int x): 2 cpdef add_cython(int x):

3 cdef int y = @ 3 cdef int y = 0

4 for i in range(x): -rl ;def_lqt i )

5 y+=1 2 or i :Lny:f;ge(x).
%%timeit o

2 add_one_cython(100060) 1 kktimeit

2 add_cython(10000)

39.4 ns + ©.0832 ns per loop (mean + std. dev. of 7 r
40.4 ns * ©.136 ns per loop (mean * std. dev. of 7 runs
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Cython - it’s not that easy

%%cython
cpdef int add_cython(int x): .
cdef int y = @ e outside Jupyter notebooks:

cdef int i

for i in range(x):
y+=1

return y

precompilation with “setup.py”

@ high performance: aim at

“pure cython”
%%timeit

e e usage with NumPy slightly

more complicated

o direct integration of C/C+-+
libraries

1.21 pus * 10.7 ns per loop (mean * std. dev. of 7

@ expect to spend a week to
learn and understand it
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A look under the hood - part 2

Are we really using what we
think we are using? - Part 2




Common R libraries

Implementation of common R libraries

Impl_lang
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Common Python libraries

Implementation of common Python libraries
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Common Julia libraries

Implementation of common Julia libraries

Impl_lang
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Geospatial /Geostats - R

C C++ CUDA Julia Python R
rGDAL 6 % 45 % 0% 0% 0% 36 %
sp 21% 0% 0% 0% 0% 21 %
gstat 62% 1% 0% 0% 0% 37 %
maptools | 41 % 0% 0% 0% 0% 59 %
geoR A% 0% 0% 0% 0%  96%
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Geospatial /Geostats - Python

Until 1-3 years ago, Python was used (almost) only as a gluetool for various
geospatial packages/GIS.

@ PostGIS: PostgreSQL and C

o QGIS: written in C++ (+ Python for API)

o GRASS GIS: written in C and C++ (+ Python for API)

o SAGA: written in C++ and C

e ESRI ArcGIS’s script environment/API migrated from VBA to Python
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Benchmarks

(there are so many benchmarks, and there is so much variance)
general

@ Julia up to 400 times faster than R
e Python often 10 times faster than R
machine learning
e Python/Scikit-learn up to 10 times faster than R/caret and with better

results

e Python/mlpack is between 5 and 50 times faster than Python/Scikit-learn

e Julia’s ML packages are between 2 slower and 400 times faster than
Python/Scikit-learn
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Language-independent packages (machine learning)

Performance matters!
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Gradient Boosting Libraries

‘ C C++ CUDA Julia Python R
CatBoost | 0% 84 % 4% 0% 10% 1%
LightGBM | 6 % 60 % 07 % 0% 22 % 11 %
XGBoost 0% 41% 14 % 0% 14 % 10 %
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Deep Learning Libraries

C C++ CUDA Julia Python R
Caffe 0% 0% 6% 0% 9% 0%
Chainer 0% 10% 2% 0% 76 % 0%
Darknet % 0% 8% 0% 0% 0%
Deeplearning4j | 0% 29 % 4% 0% 1% 0%
Flux 0% 0% 0? % 100% 0% 0%
MXNet 0% 31% 4% 0% 32 % 0%
PyTorch 5% 5% 8% 0% 32 % 0%
TensorFlow 0% 61% 07 % 0% 31 % 0%
Theano 5% 0% 1% 0% 94 % 0%
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Considerations for production use (1)

General

what packages are available

define what you need in terms of performance
remember infrastructure and development costs
identify the skill set of team members

avoid writing packages in C/C++ (safety+security)

write benchmarks
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Considerations for production use (2)

use R
o performance is not important
e many legacy stats packages are needed

if performance is required: give tensorflow a chance

if current products are built around it
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Considerations for production use (3)

use Python
e unified backend (incl. webservices) is required
e machine learning is a key part (no way around Python(+C/C++/CUDA)
yet)
e use PyTorch/TensorFlow or cython for heavy math
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Considerations for production use (4)

use Julia
o if strong mathematical optimization across all packages is needed

@ clean from scratch implementation is required

@ pure performance is required
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Some suggestions to the R community

e analysis of R: why is it so slow?

cython allows to deploy Python in production - anything cython-like for
R in development?

e R as gluetool only?

@ benchmark packages (e.g. data.table vs DBMS)

R API for mlpack
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