
R - Python - Julia
Insights into old and new languages for data science and machine learning

and implications for their use in (high performance) production
environments

Simon Wenkel

https://www.simonwenkel.com

useR Tallinn - January 16th, 2020

Simon Wenkel R - Python - Julia 1 / 53

https://www.simonwenkel.com


License Info

c©Simon Wenkel

This PDF is released under the CC BY-SA 4.0 license.

Simon Wenkel R - Python - Julia 2 / 53

https://creativecommons.org/licenses/by-sa/4.0/


Contents

1 General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

4 Data Science/Machine Learning Stacks
Language-dependent packages/ecosystem
Language-independent packages

5 Considerations for using Julia, Python and R in production

Simon Wenkel R - Python - Julia 3 / 53



Contents

1 General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

4 Data Science/Machine Learning Stacks
Language-dependent packages/ecosystem
Language-independent packages

5 Considerations for using Julia, Python and R in production

Simon Wenkel R - Python - Julia 4 / 53



What you (don’t) get in this talk

No recommendations what language to use (R, Python, Julia, C, Fortran,
etc.) but things to consider when (re)-designing a product from scratch

Simon Wenkel R - Python - Julia 5 / 53



Benchmark disclaimer

setup often unclear
generic code vs. hand-optimized
micro-benchmarks vs. end-to-end benchmark
data set properties not well documented

... but from personal experience: most benchmark results give good
indications ...

Simon Wenkel R - Python - Julia 6 / 53



(High performance) production environments

fundamental trade-offs
implementation time vs. run-time performance
salaries vs. infrastructure costs

challenges
licensing issues (e.g. some Boost (C++) libraries)/dependency hell
prototyping speed
performance issues with interpreted languages
program in C/C++/F03 and make it fast, secure and memory safe

general setting
“manual workflow”: 1 hour vs. 7 day coffee break
max. allowed runtime - product useless otherwise

implications of (simple) 10x speed-ups (R/Python/Julia)
(if all bottlenecks are fixed)
serving the same amount of customers with a fraction of hardware
if real-time requirements: product/no product
much faster prototyping
no C/C++ conversion department needed

Simon Wenkel R - Python - Julia 7 / 53



Contents

1 General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

4 Data Science/Machine Learning Stacks
Language-dependent packages/ecosystem
Language-independent packages

5 Considerations for using Julia, Python and R in production

Simon Wenkel R - Python - Julia 8 / 53



Introducing Julia (1)

“[...] We’ve generated more R plots than any sane person should. C is
our desert island programming language.
We love all of these languages; they are wonderful and powerful. For the work
we do — scientific computing, machine learning, data mining,
large-scale linear algebra, distributed and parallel computing — each
one is perfect for some aspects of the work and terrible for others. Each one
is a trade-off. [...]

We want a language that’s open source, with a liberal license. We want the
speed of C with the dynamism of Ruby. We want a language that’s
homoiconic, with true macros like Lisp, but with obvious, familiar
mathematical notation like Matlab. We want something as usable for
general programming as Python, as easy for statistics as R, as natural
for string processing as Perl, as powerful for linear algebra as Matlab, as
good at gluing programs together as the shell. Something that is dirt
simple to learn, yet keeps the most serious hackers happy. We want it
interactive and we want it compiled.[...]”

https://julialang.org/blog/2012/02/why-we-created-julia/

Simon Wenkel R - Python - Julia 9 / 53

https://julialang.org/blog/2012/02/why-we-created-julia/


Introducing Julia (2)

backed by MIT
many packages developed by US gov. (funded) institutions
not just another language - aims to solve a bunch of significant problems
mostly implemented in itself
very good packages for mathematical optimization (written in Julia
instead of Fortran 77)
strong use cases (so far): numerics, mathematical optimization
number of users in academia and industry grows rapidly

seems to start replacing Matlab
gets a lot of attention in math heavy industries (e.g. engineering,
finance/insurance)

seems to raise awareness in statistics, less in machine learning (yet)

Simon Wenkel R - Python - Julia 10 / 53



Introducing Julia - code example (1)

Simon Wenkel R - Python - Julia 11 / 53



Introducing Julia - code example (2)

Simon Wenkel R - Python - Julia 12 / 53



Introduction

Release
Year

1993 (S: 1976) 1990 2012

License GPL (v2)
(core + (most?)

packages),
(tidyverse: GPLv3,
MIT, on github:
copyright/no
license?)

PSFL
(packages: BSD,
MIT, Apache,

GPL)

MIT
(core + most
packages)

Typing
Discipline

dynamic duck, dynamic,
gradual

dynamic,
nominative,
parametric,
optional

Language
Type
(default)

interpreted interpreted compiled
JIT (via LLVM)

Simon Wenkel R - Python - Julia 13 / 53



Common features

can use Jupyter notebooks (and RMarkdown)

can use software written in other languages (FFIs)

Garbage collected

Simon Wenkel R - Python - Julia 14 / 53



Contents

1 General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

4 Data Science/Machine Learning Stacks
Language-dependent packages/ecosystem
Language-independent packages

5 Considerations for using Julia, Python and R in production

Simon Wenkel R - Python - Julia 15 / 53



A look under the hood

Are we really using what we
think we are using?

Simon Wenkel R - Python - Julia 16 / 53



Language source code - R

C and Fortran: almost the entire stdlib written in them
R: datasets, high-level functions/data structures, constants,
documentation, tests; not used for intense computing/math functions?

Simon Wenkel R - Python - Julia 17 / 53



Language source code - (C)Python

C/C++: almost the entire stdlib written in them, especially everything
performance critical
Python: high-level functions/classes/data structures, constants, some core
libraries, documentation, tests; not used for intense computing/math
functions

Simon Wenkel R - Python - Julia 18 / 53



Language source code - Julia

C/C++: core functions (system level, e.g. OS support), LLVM backend,
FFI (Foreign Function Interface)
Julia: almost everything else (incl. stdlib)

Simon Wenkel R - Python - Julia 19 / 53



Micro-Benchmarks

source: https://julialang.org/benchmarks/ [1]

Simon Wenkel R - Python - Julia 20 / 53

https://julialang.org/benchmarks/


Micro-Benchmarks

https://julialang.org/benchmarks/ [1]

Simon Wenkel R - Python - Julia 21 / 53

https://julialang.org/benchmarks/


Micro-Benchmarks

https://julialang.org/benchmarks/ [1]

Simon Wenkel R - Python - Julia 22 / 53

https://julialang.org/benchmarks/


Micro-Benchmarks

https://julialang.org/benchmarks/ [1]

Simon Wenkel R - Python - Julia 23 / 53

https://julialang.org/benchmarks/


How to make things fast and efficient

without re-writing our DS/ML pipelines in C/Fortran/CUDA/Rust/etc.

at almost no development costs (time)

aiming at orders of magnitude speed-ups (not a few percent improvement)

NB!: not going to focus on multi-threading or GPGPU

Simon Wenkel R - Python - Julia 24 / 53



Making things fast and efficient - Math Libraries

BLAS (Basic Linear Algebra Subprograms)
written in Fortran

ATLAS (Automatically Tuned Linear Algebra Software)
written in C, Fortran, Pascal, Assembly
faster than BLAS

OpenBLAS
optimized BLAS library written in Fortran, Assembly, C
much faster than BLAS and faster than ATLAS
OpenBLAS leads to 2-10x faster matrix computation in R!(as of 2013 ;))

Intel MKL (Math Kernel Library)
hand-optimized for Intel CPUs in C, C++, Fortran (+ Assembly?)
a bit/a lot faster than OpenBLAS depending on application and platform

tensorflow/core/platform/cpu_feature_guard.cc:145] This TensorFlow binary
is optimized with Intel(R) MKL-DNN to use the following CPU instructions
in performance critical operations: SSE4.1 SSE4.2 AVX

Other libs: ARPACK-NG, Eigen, LAPACK (with BLAS/ATLAS), cuBLAS,
clBLAS, Armadillo, Apple accelerate, ...

Simon Wenkel R - Python - Julia 25 / 53



Making things fast and efficient - Language level

1

best
practices

use correct
libraries, avoid

loops, use
functions, use

vectorization, don’t
use dplyr2 [3, 4, 5, 6]

use correct
libraries, avoid

loops, use
vectorization, don’t

use pandas

(type definitions),
use functions, think
twice beforce using

vectorization

JIT R-compiler 3,
R-JIT

(deprecated?), RIR

PyPy, Numba part of Julia

(C, C++,
etc.)
extension
generator

N/A? Cython not necessary

1contains more powerful optimization than Numba+Cython [2]
2according to it’s description: “A fast, consistent tool for working with data frame like objects, both in

memory and out of memory.”
3enabled since R 3.4.0, runs after the 1st or 2nd time a function is used [7]

Simon Wenkel R - Python - Julia 26 / 53



Choosing the correct library - “basic math”

running a mathematical function (e.g. sin(x)) on:
lists of various lengths
matrices (square) of various sizes
no return/output, only input and calculations
both reach sizes - should be split into smaller chunks for parallel processing

200 iterations per function and dataset
not a trivial benchmark that indicates advantages/disadvantages of loops
original idea: best Python library for different list/array size
NB!: Garbage Collection!
NB!: log-log plots!

Simon Wenkel R - Python - Julia 27 / 53



Choosing the correct library - Python “basic math” (1)

sin cos tan asin acos atan exp sinh cosh tanh abs ceil floor sqrt
Function

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
Ru

nt
im

e 
[s

]

TensorFlowCPU on Matrix_1000

https://www.simonwenkel.com/2020/01/05/python-math-benchmarks.html

Simon Wenkel R - Python - Julia 28 / 53

https://www.simonwenkel.com/2020/01/05/python-math-benchmarks.html


Choosing the correct library - Python “basic math” (2)

List_1 List_10 List_100 List_1000 List_10000 List_100000 List_1000000
Dataset

10 6

10 5

10 4

10 3

10 2
Ru

nt
im

e 
[s

]

Library
NumPy
CPython
PyTorchCPU
PyTorchGPU
TensorFlowCPU

https://www.simonwenkel.com/2020/01/05/python-math-benchmarks.html

Simon Wenkel R - Python - Julia 29 / 53

https://www.simonwenkel.com/2020/01/05/python-math-benchmarks.html


Choosing the correct library - Python “basic math” (3)

Matrix_1 Matrix_10 Matrix_100 Matrix_1000 Matrix_10000
Dataset

10 6

10 5

10 4

10 3

10 2

10 1

100

Ru
nt

im
e 

[s
]

Library
NumPy
CPython
PyTorchCPU
PyTorchGPU
TensorFlowCPU

https://www.simonwenkel.com/2020/01/05/python-math-benchmarks.html

Simon Wenkel R - Python - Julia 30 / 53

https://www.simonwenkel.com/2020/01/05/python-math-benchmarks.html


Choosing the correct library - R “basic math”

Matrix_1 Matrix_10 Matrix_100 Matrix_1000 Matrix_10000
Dataset

10 4

10 3

10 2

10 1

100

Ru
nt

im
e 

[s
]

Library
R Base
TensorFlow CPU

single thread only
via py_call?
no direct C++
API usage?
GPU seems to
work

Simon Wenkel R - Python - Julia 31 / 53



“Basic math” language comparison (1)

100 101 102 103 104 105 106

List size

10 7

10 6

10 5

10 4

10 3

10 2

M
ea

n 
Ru

nt
im

e 
[s

]

Library
R Base
NumPy
CPython
Julia unoptimized
Rust (unoptimized/libm)

Simon Wenkel R - Python - Julia 32 / 53



“Basic math” language comparison (2)

100 101 102 103 104

Matrix dimension (NxN)

10 8

10 6

10 4

10 2

100

M
ea

n 
Ru

nt
im

e 
[s

]

Library
R Base
NumPy
CPython
Julia unoptimized
Rust (unoptimized/libm)

Simon Wenkel R - Python - Julia 33 / 53



Cython - toy example

Simon Wenkel R - Python - Julia 34 / 53



Cython - it’s not that easy

outside Jupyter notebooks:
precompilation with “setup.py”
high performance: aim at
“pure cython”
usage with NumPy slightly
more complicated
direct integration of C/C++
libraries
expect to spend a week to
learn and understand it

Simon Wenkel R - Python - Julia 35 / 53



Contents

1 General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

4 Data Science/Machine Learning Stacks
Language-dependent packages/ecosystem
Language-independent packages

5 Considerations for using Julia, Python and R in production

Simon Wenkel R - Python - Julia 36 / 53



A look under the hood - part 2

Are we really using what we
think we are using? - Part 2

Simon Wenkel R - Python - Julia 37 / 53



Common R libraries

mlr

da
ta.

tab
le

dp
lyr

mlrM
BO

rea
dr

tid
yr

rpa
rt

ran
do

mFor
est

SR
C

na
ive

ba
ye

s

big
las

so
ran

ge
r

Library

0

20

40

60

80

100

Pe
rc

en
t_

po
in

ts
Implementation of common R libraries

Impl_lang
C
C++
Fortran
CUDA
Julia
Python
R

Simon Wenkel R - Python - Julia 38 / 53



Common Python libraries

Num
Py

Sci
Py

Pa
nd

as

Se
ab

orn

Matp
lot

lib

Sci
kit

-le
arn

mlpa
ck

spa
cy

thi
nc

Library

0

20

40

60

80

100

Pe
rc

en
t_

po
in

ts
Implementation of common Python libraries

Impl_lang
C
C++
Fortran
CUDA
Julia
Python
R

Simon Wenkel R - Python - Julia 39 / 53



Common Julia libraries

Plo
ts.

jl

Maki
e.j

l
MLJ.j

l

Ta
ble

s.jl

Data
Fra

mes.
jl

Deci
sio

nT
ree

.jl

Sta
tsB

ase
.jl

Sta
tsM

od
els

.jl

Sci
kit

Lea
rn.

jl

Library

0

20

40

60

80

100

Pe
rc

en
t_

po
in

ts
Implementation of common Julia libraries

Impl_lang
C
C++
Fortran
CUDA
Julia
Python
R

Simon Wenkel R - Python - Julia 40 / 53



Geospatial/Geostats - R

C C++ CUDA Julia Python R
rGDAL 6 % 45 % 0 % 0 % 0 % 36 %
sp 21 % 0 % 0 % 0 % 0 % 21 %
gstat 62 % 1 % 0 % 0 % 0 % 37 %
maptools 41 % 0 % 0 % 0 % 0 % 59 %
geoR 4 % 0 % 0 % 0 % 0 % 96 %

Simon Wenkel R - Python - Julia 41 / 53



Geospatial/Geostats - Python

Until 1-3 years ago, Python was used (almost) only as a gluetool for various
geospatial packages/GIS.

PostGIS: PostgreSQL and C
QGIS: written in C++ (+ Python for API)
GRASS GIS: written in C and C++ (+ Python for API)
SAGA: written in C++ and C
ESRI ArcGIS’s script environment/API migrated from VBA to Python

Simon Wenkel R - Python - Julia 42 / 53



Benchmarks

(there are so many benchmarks, and there is so much variance)
general

Julia up to 400 times faster than R

Python often 10 times faster than R

machine learning
Python/Scikit-learn up to 10 times faster than R/caret and with better
results

Python/mlpack is between 5 and 50 times faster than Python/Scikit-learn

Julia’s ML packages are between 2 slower and 400 times faster than
Python/Scikit-learn

Simon Wenkel R - Python - Julia 43 / 53



Language-independent packages (machine learning)

Performance matters!

Simon Wenkel R - Python - Julia 44 / 53



Gradient Boosting Libraries

C C++ CUDA Julia Python R
CatBoost 0 % 84 % 4 % 0 % 10 % 1 %
LightGBM 6 % 60 % 0? % 0 % 22 % 11 %
XGBoost 0 % 41 % 14 % 0 % 14 % 10 %

Simon Wenkel R - Python - Julia 45 / 53



Deep Learning Libraries

C C++ CUDA Julia Python R
Caffe 0 % 80 % 6 % 0 % 9 % 0 %
Chainer 0 % 10 % 2 % 0 % 76 % 0 %
Darknet 90 % 0 % 8 % 0 % 0 % 0 %
Deeplearning4j 0 % 29 % 4 % 0 % 1 % 0 %
Flux 0 % 0 % 0? % 100 % 0 % 0 %
MXNet 0 % 31 % 4 % 0 % 32 % 0 %
PyTorch 5 % 51 % 8 % 0 % 32 % 0 %
TensorFlow 0 % 61 % 0? % 0 % 31 % 0 %
Theano 5 % 0 % 1 % 0 % 94 % 0 %

Simon Wenkel R - Python - Julia 46 / 53



Contents

1 General remarks

2 Introducing R, Python, and Julia

3 A look under the hood

4 Data Science/Machine Learning Stacks
Language-dependent packages/ecosystem
Language-independent packages

5 Considerations for using Julia, Python and R in production

Simon Wenkel R - Python - Julia 47 / 53



Considerations for production use (1)

General
what packages are available
define what you need in terms of performance
remember infrastructure and development costs
identify the skill set of team members
avoid writing packages in C/C++ (safety+security)
write benchmarks

Simon Wenkel R - Python - Julia 48 / 53



Considerations for production use (2)

use R
performance is not important
many legacy stats packages are needed
if performance is required: give tensorflow a chance
if current products are built around it

Simon Wenkel R - Python - Julia 49 / 53



Considerations for production use (3)

use Python
unified backend (incl. webservices) is required
machine learning is a key part (no way around Python(+C/C++/CUDA)
yet)
use PyTorch/TensorFlow or cython for heavy math

Simon Wenkel R - Python - Julia 50 / 53



Considerations for production use (4)

use Julia
if strong mathematical optimization across all packages is needed
clean from scratch implementation is required
pure performance is required

Simon Wenkel R - Python - Julia 51 / 53



Some suggestions to the R community

analysis of R: why is it so slow?

cython allows to deploy Python in production - anything cython-like for
R in development?

R as gluetool only?

benchmark packages (e.g. data.table vs DBMS)

R API for mlpack

Simon Wenkel R - Python - Julia 52 / 53



References I

[1] URL https://julialang.org/benchmarks/.
[2] Christopher Rackauckas. Why Numba and Cython are not substitutes for Julia,

2018. URL https://www.stochasticlifestyle.com/
why-numba-and-cython-are-not-substitutes-for-julia/.

[3] URL https://h2oai.github.io/db-benchmark/.
[4] John Mount. Timing Working With a Row or a Column from a data.frame,

2019. URL http://www.win-vector.com/blog/2019/05/
timing-working-with-a-row-or-a-column-from-a-data-frame/.

[5] John Mount. http://www.win-vector.com/blog/2019/06/data-table-is-much-
better-than-you-have-been-told/, . URL http://www.win-vector.com/blog/
2019/06/data-table-is-much-better-than-you-have-been-told/.

[6] John Mount. New Timings for a Grouped In-Place Aggregation Task, . URL
http://www.win-vector.com/blog/2020/01/
new-timings-for-a-grouped-in-place-aggregation-task/.

[7] Peter Dalgaard. R 3.4.0 is released, 2017. URL
https://stat.ethz.ch/pipermail/r-announce/2017/000612.html.

Simon Wenkel R - Python - Julia 53 / 53

https://julialang.org/benchmarks/
https://www.stochasticlifestyle.com/why-numba-and-cython-are-not-substitutes-for-julia/
https://www.stochasticlifestyle.com/why-numba-and-cython-are-not-substitutes-for-julia/
https://h2oai.github.io/db-benchmark/
http://www.win-vector.com/blog/2019/05/timing-working-with-a-row-or-a-column-from-a-data-frame/
http://www.win-vector.com/blog/2019/05/timing-working-with-a-row-or-a-column-from-a-data-frame/
http://www.win-vector.com/blog/2019/06/data-table-is-much-better-than-you-have-been-told/
http://www.win-vector.com/blog/2019/06/data-table-is-much-better-than-you-have-been-told/
http://www.win-vector.com/blog/2020/01/new-timings-for-a-grouped-in-place-aggregation-task/
http://www.win-vector.com/blog/2020/01/new-timings-for-a-grouped-in-place-aggregation-task/
https://stat.ethz.ch/pipermail/r-announce/2017/000612.html

	General remarks
	Introducing R, Python, and Julia
	A look under the hood
	Data Science/Machine Learning Stacks
	Language-dependent packages/ecosystem
	Language-independent packages

	Considerations for using Julia, Python and R in production
	References

